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It is shown that Hermite functions form a convenient representation of the Hilbert 
transform kernel (Kramer+Kronig transform). Application is made to two densities of 
states. The zeros and weight functions for Hermite integration for order n = 300 are 
given in an appendix. 

I. INTRODUCTION 

Analytic linear integral transforms are part of the working knowledge of almost 
all physicists. One learns of the usefulness and applicability of the Fourier integral 
transform, for example, at the earliest stages of one’s training. However, rather 
less attention is given to other integral transform systems, and less still to specific 
techniques to use in formulating numerical procedures. The result is that often 
inappropriate numerical procedures have been used to carry out such integral 
transforms. The most problematic example, we believe, is the case of singular 
kernels such as numerical Kramers-Kronig [l, 21 or Hilbert transformation [3-51 
which contain implicit principle value integrals. 

* Based on work performed under the auspices of the U. S. Atomic Energy Commission and 
also supported by the Advanced Research Projects Agency of the Department of Defense and 
was monitored by the Army Research Office, Durham. 
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We believe, however, that any ordinary integral transform may be handled 
in a completely straightforward manner. One has two systems of functions d(w) 
and $(u’) related through a linear kernel K(w, w’) as 

$(oJ) = J’ K(o, o’) d(d) dw’. (1) 

The case of the symmetric kernel 

qw, w’) = K(w’, co) (2) 

has been treated exhaustively by Courant and Hilbert [4]. Simple numerical 
procedures consist of expanding #J and d in a complete, orthonormal set ~,Jw), 

and the kernel as the Cauchy outer product 

(3) 

(4) 

so that the integral Eq. (1) is reduced to the linear matrix equation 

The problem of carrying out the numerical transform is thus reduced to the two 
mechanical operations of forming the expansion coefficients ,L3 in Eq. (3) and 
carrying out the matrix multiplication in Eq. (5). 

In this paper, we will consider functions and kernels defined over the whole 
real line (-cc < w < cc) and will thus focus on expansions in the complete set 
of Hermite functions &(w). We will limit our discussion of the kernel to the 
important case of the Hilbert or Kramers-Kronig transform 

&f(w, 4 = (p/ml@J - 41, (6) 

where the P indicates that the principle value of the integral (1) is to be taken. 
Finally we limit ourselves here to consideration of cases where the function d(w’) 
is well defined everywhere. We will consider real experimental data and the special 
problems inherent in extrapolation elsewhere. 

We consider a mathematically exact treatment of the problem of numerical 
Hilbert transformation which is simple to use, can be applied to a variety of cases, 
and automatically least-square-fits data. In Section II we discuss the formal deriva- 
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tion of our technique, and in Section III the application to Monte-Carlo derived 
densities of electron states for a simple cubic s band and face-centered-cubic 
palladium. Section IV summarizes our results and discusses application to other 
systems. 

II. FORMALISM 

A. The Hilbert Operator 

As is well known, the Kramers-Kronig relation between the real and imaginary 
parts of a response function arise because of causality. If, in the long wave length 
limit, a time varying field E(t) is impressed upon a media starting at t = 0, then 
the linear response o(t) must also be zero for t < 0, and is given by 

D(j) = 4) Jw), (7) 

where E is the (complex) generalized susceptibility. Upon taking the complex 
Fourier transform of (7) we obtain the Kramers-Kronig relations [6]: 

El(W) - 1 E $ Jrn $yld;’ , 
-‘x 

s 
= (Ed - 1) dw’ 

w’ - w 3 
--a; 

where Ed and Ed denote the real and imaginary parts, respectively, and Q(W) = 1. 
If we regard the principle value integrals of (8) as an operator P then we have 
the functional relations 

(9 - 1) = P(4, 

E$ = -P(E1 - I), 
(9) 

or that 
(El - 1) = -P2(E1 - l), (10) 

which makes manifest that P is an antiunitary operator. 
The relations (8) form a Hilbert transform pair. The close connection between 

Hilbert and Fourier integral transformations is seen in that the (Dirichlet) kernel 
for (double) Fourier transformation is given by 

I cc 
K&o, w’) = -g 

s 
dt cos(w - w’)t z S(w - w’) (11) 

0 
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(a Dirac delta function), whereas the analogous kernel for Hilbert transformation 
is 

1 

J 

m 

KH(W, cu’) = ; 
P 

dt sin(w -- w')t 7: LP 
0 ?I w-w” (12) 

which we define as the (odd) function 

p(w - w’) = (l/-rr)[P/(w - w’)]. (13) 

The relations (11) and (12) may be used to form representations of the operators 
KF and KH . Any denumerable, complete set of functions defined over the whole 
real line may be used to form a representation for (I 1) since in terms of any 
complete orthonormal set #,(cIJ) we have 

(14) 

where the sum extends over all of the members of the set. An analogous representa- 
tion for the function p(w - o’) may be constructed as follows: 

From (12), or by direct integration, we have 

. co p(o - a’) = -1 s 2rr -m 
dt SGN(t) ei(w~w’)~ (15) 

where SGN(t) is the signature or Signum function (-1 for t < 0 and +l for 
f > 0 and 0, say, if t = 0). We recall that the Signum function, like the delta 
function, is a generalized function [3] and has the property 

(d/dx) SGN(x - x’) = 26(x - x’). (16) 

Equation (15) allows us to construct representations of the Hilbert operator from 
the representation for exp(iwt). In this paper, we will concentrate on a single 
representation, the Hermite functions tin(u). We recall [7] that the nth-order 
orthonormal Hermite function is found from the corresponding Hermite poly- 
nomial H,(w) by 

&(a~) = Nne-w”/2Hn(w), (17) 

where N, is a normalization factor given by 

For our purposes the most important property of the Hermite functions is that 
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up to a phase factor i”, the Fourier transform of a Hermite function of order n 
is the same Hermite function 

-& I, s ei”‘t dw’sji,(w’) = P+,(t). 

Multiplying both sides of Eq. (19) by sLn(w) and utilizing Eq. (14), we have a 
representation for the Fourier kernel eiUt: 

eiwt = v’2-rrC i”&(t) I),(oJ) (20) 
11 

and the conjugate relation for e- iw’t. Placing (20) in (15), we have 

Pb - 4 = (-9 c c w (-VL ICl?%(w> &&4 xln 3 
n ,I& 

where Sk, is given by 

(21) 

s:, = [= dt SGN(t) $n(t> An(f). (22) 
J -cc 

Thus Sk, forms a representation of the signurn operator in terms of the Hermite 
functions. Since the Hermite functions are simply odd or even, I,&- t) = (- I)” #Jf), 
the integral may be reduced to 

Sbrn = [1 + (- l)m+n+l 1 jr dt WI &At). (23) 

SA, is zero unless n + m is odd. Let us assume that this is true. We define a sym- 
metric real matrix 0 related to _S’ by 

~?zm = jm dt H,(t) H,(t) e+‘. (24) 
0 

We recall [8] that the derivative d[e-“2H,-,(x)] is given by e-“‘H,(x) dx. Applying 
an integration by parts, we find the double recursion formula on the matrix 0: 

Ann = H,(O) H,-l(0) + 2mon-l,m-1 ) (25) 

with a similar relation on interchanging it, m. Eliminating u+~,,,+~ from the later 
two equations, and replacing the normalization factors, we find the symmetric 
matrix: 

S’ - 2-(n+m-2) nH,_,(O) H,(O) - mH,-,(O) H,(O) 
nm - n!m!?T 11 - m (26) 
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Let us define the antisymmetric matrix _S such that 

p(w - 4 = 1 Lz~n(~) $M4. 
lZm 

WI 

Then the relation between S and S’ with m = n + 2h + 1 is given by 

s,, = (- l)h+l S& ; &n = --sm (28) 

The compactness of the matrix S can be seen either from Eq. (4) or from the 
fact that for fixed a 

as h-l. (29) 

The latter is easily proved [9] by direct expansion of Eq. (26). 

B. Hermite Integration 

A separate report [IO] gives the zeros and weight function for Hermite integra- 
tion of order n = 20, 26, 50, 76, 150. Those for the 300-th order are given in an 
appendix. Also available are those of the 500-th and lOOO-th order, which are 
probably high enough for any problem of practical interest. The Hermite function 
Fortran programs are also published in the Argonne report, and are available 
on request. Because there are no special problems in generating these functions, 
simple, upward recursion was used: 

H,+,(x) = 2xH,(x) - 2nH,-,(x). (30) 

The only numerical problem is the implicit factor of n! in the Hermite polynomials, 
which was treated by extending the exponential part of the double precision word 
of an IBM 360/50/75 to include arbitrarily high powers of 16. To avoid overflow/ 
underflow problems the functions are replaced by zero if they are smaller than 
16**(--17). 

A thorough discussion of Hermite integration has been given by Hochstrasser 
[ 1 l] and Davis and Polansky [12] based on the classic work of Russel [I 31 and 
Salzer et al. [14]. Our results differ from that of the previous authors only in that 
we have gone to higher order [IS] and used a different weight function. Hermite 
integration of an arbitrary functionf(x) is approximated, to order n, by 

.r 1, e&f(x) dx g i W,(xin)f(xin), (31) 
i=l 

where xi* is the i-th zero of the n-th order Hermite polynomial H,, , and the weight 
factors W, are given by 

W,(x,“) = 2++2! ~G/~I”[H~-~(x~~)]~. (32) 
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A numerically more convenient representation for Hermite integration is achieved 
if we consider instead 

jm g(x) dx = i ~~'(~2) g(xin), -cc i=l 

where W,’ is given by 

W,‘<x,“> = Wn(xin) exp(xp”) = l/(n#;_,(~~~)), 

where #, is the n-th order orthonormal Hermite function. In the appendix we 
list the positive zeros and weight functions W,’ for the Hermite polynomials of 
order 300. For the overlapping case of IZ = 20, our results agree with those of 
Salzer et al. to at least 14 significant figures. 

We have found the zeros of the Hermite polynomials (or Hermite functions) 
by noticing that the sequence of polynomials H,, , Hi ,..., H, form a Sturm 
sequence. Thus by counting the number of sign changes in the sequence, we know 
precisely, by Budan’s Theorem, the number of zeros between a given point x 
and zero. (Infinitesimally above zero the sign of the Hermite polynomials is plus.) 
An estimate of the largest zero of the Hermite polynomial of order II is found by 
remembering that the Hermite functions are eigenfunctions (with eigenval ue 
E, = (n + l/2) hue) of the simple harmonic oscillator operator, H = p2/2m + $kx2, 
where w, = v’@%. We recall that the last zero of the probability density of the -- 
n-th harmonic oscillator eigenfunction is bounded by the classical limit d2E,/k, 
or in the appropriate units (m = k = I), by x,,, = 2/2n +1 . Thus all of the -- 
zeros of the n-th order Hermite polynomial lie between + d2n + 1. 

Our computational procedure for evaluating the zeros of the n-th polynomial 
used the interval given by the absolute bounds + -\/2n + 1 and continuously 
subdivided this interval by a factor of 2. Each subinterval was selected for further 
operation depending on whether the Sturm sequence predicted an appropriate 
zero in the left or right-hand portions. Such a procedure quickly, and accurately 
converged to our results in the appendix. We have further tested our zeros through 
the sum rule: 

to an accuracy of at least 14 significant figures for all cases n. 
In Table I we present the lowest 10 (10 x 10) elements of the antisymmetrical 

matrix S. Note that for finite order the operator Eq. (4) reduces to a matrix equa- 
tion and that the square of S (- S2) is a matrix whose diagonal elements have an 
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absolute value slightly less than I. If we define the normalized trace T of the 
squared matrix S2 as 

T = ; f i(s2),, 1, 
?&=I 

(36) 

T has the converging values of 0.885, 0.944, 0.970, 0.984, 0.992 for N of 10, 25, 
50, 100 and 200, respectively, with the largest error in the last (biggest n) term. 

C. Moments and Scaling 

If we assume that the function we wish to transform (-g(o’)) has a norm of 1, 
then we may think of g(w’) as a distribution density and the transformed function 
F(w) as 

F(o) = - ; j gyid;’ ) 

where F and g are real and imaginary parts of a self-energy, for example. Let us 
formally expand the kernel as 

(38) 

Then upon (carefully) interchanging summation and integration, Eq. (37) becomes 

F(w) = f f (LO-~ 1 do’ w’“g(w), 
m=0 

which (formally) shows that Hilbert transformation may be thought of as merely 
interchanging the Taylor and Laurent expansions (assuming they exist) of the 
two functions about zero. In terms of the distribution density g, we can define 
the m-th moment 

so that 

t-h = .c du’ uYmg(o’), (40) 

F(w) = 2 f pm(u)-“. 
T?Z=O 

It is clear from (40) and (41) that a further expansion of the Laurent representation 
of F(o) in Hermite functions yields a worse result for the low order terms. Better 
converged results would be achieved if we remove (analytically) as much of the 
low-order moments as we can from g(w). In practice we do this by finding a simply 



STATES USING HERMITE FUNCTIONS 199 

transformed analytic function g’(w) which resembles g(w) as closely as possible 
and expanding not the entire g(w) in Hermite functions but the difference as 

Bn’ = J dJ(g(w’) - g’(4) Q)n(4, (42) 

F(u) = 1 Xw,$,‘~n(~) + F’(w), (43) 

where F’(w) is the analytic transform of g’(w) and the difference g’(w’) - g(w’) 
has no zero-th moment. Thus a Laurent expansion of (F(w) - F'(w)) begins with 
the second term (~o-~), in the general case, and with the third term (~a-~) 
when F(m) is odd. Further details are given in the results below. 

Finally we consider the effects of scaling the expansion as 

g(w) = c Cn(~) %(~w)Y (44) 

where CII is a scaling constant. (Note that the form of our kernel is independent 
of scaling, providing that the scale factor in w and in o’ has the same value. 
Therefore the same matrix S,, may be used for all scaled cases.) It is clear from 
the completeness of the Hermite functions that convergence may be eventually 
obtained, independent of any particular 01, but practical considerations demand 
that the convergence of (42) be as rapid as possible. For functions defined only 
over a finite range, as in this paper, we find that a best scale factor is approximately 
achieved, if the highest zero of the highest expansion function is scaled to fall at 
about twice the range R as 

a = d2N + 1/2R, (45) 

where N is the order of the highest Hermite function. 
Note that a best scale factor depends on the actual form of the function one 

wishes to transform. However, as discussed below, the exact value of c11 is not 
critical, and our choice (45) will work well for many cases. The only important 
consideration is to avoid a confluence of the end of the function range (d2N + 1) 
and the edge of the (finite) integration range. 

RESULTS AND APPLICATIONS 

As a first example of our technique of Hilbert transformation, we consider 
two applications to densities of states: the model-system triple-cosine s band 
density of states, and that of a more realistic transition metal (palladium). 

581/1x/2-4 
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A. s-band Density qf States 

We apply our technique to the important problem of deriving the “F” function 
for the density of s states in the simple cubic Iattice: 

F(w) = --p i‘” dw’ g, 
27 -cc w 

where 
2 

_ G(w’) = c2n1r)3 s 
d& 6(E@) - w’), 

E(k) = 0 - cos(k,a) - cos(k,a) - cos(k,a), 

-\ ,’ 
1’ 

.i 

1’ 
,’ 

,:‘I 

(46) 

(47) 

(48) 

FIG. 1. The density of states (a) and Hilbert transform (b) of a simple cubic s band. Note 
that the density has a zero-th moment of 2. As explained in the text, removal of the analytic- 
zero-th moment function (dashed lines) greatly improves the convergence. Because of the small 
error, only the Hermite expansion function have been plotted. In the plot we have sharpened 
very small rounding errors at +l.O and rt 3.0 due to the finite (250) order of the expansion. 



STATES USING HERMITE FUNCTIONS 201 

and -(n/a) < k, , k, , k, < rrja. In Fig. l(a) we plot a three hundred histogram 
approximation to (47), where we have used one-million Monte Carlo points [16] 
to integrate (47). The functions F(w) and G(w) have the analytic [17] representation 

(49) 

In order to improve convergence of the function F(w), we have subtracted out 
the zero-th moment as was discussed above. The function G(o) has a zero-th 
moment of 2(J G(w) dw = 2). We have used the triangle-like function G,(w) 

G,(w) = Q[l - SGN(w) w/3] 

which has the analytic transform 

(50) 

F,(o)= -~[Ini~1-~Ini(w-~~+3)1]. (51) 

Note that to first order, the log poles in (51) at 53 cancel (Fs is log-singular in 
its derivatives) as is shown in Fig. l(b). Should the presence of such poles prove 
detrimental, in given applications, a less singular function than (50) should be 
used. For the cases considered here (50) and (51) cause no problems. 

TABLE 11 

Convergence error of the expansion of the density of cubic s states G and its Hilbert 
transform Fin scaled Hermite functions of various order n 

G(w) F(w) 
n PLO f 0 PLO = 0 PO i 0 PO = 0 

25 0.0324 0.0097 0.1647 0.0099 
50 0.0221 0.0055 0.1653 0.0071 

100 0.0158 0.0028 0.1660 0.0064 
150 0.0126 0.0022 0.1659 0.0065 
200 0.0105 0.0018 0.1658 0.0066 
250 0.0086 0.0016 0.1656 0.0066 

In Table II we test the convergence of the Hilbert transform by listing the rms 
error (of both G and F) as a function of total number of expansion terms. The error 
is defined as 

error2 = -&-c (GA(q) - Go, 
s z 

(52) 



202 AFSHAR, MUELLER AND SHAFFER 

where G, is the analytic function (49), and G is formed from the expansion proce- 
dure. The two separate cases cover the absence or presence of the zero-th moment 
function. Clearly the presence of the moment function is very helpful for the 
accurate evaluation of the F function. but makes little difference to the G. 

TABLE 111 

The effect of scaling the expansion function on the residual fitting error 

n = 100 (PO = 0) 

a. G F 

0.25 0.0237 0.0211 
0.50 0.0096 0.0098 
1.0 0.0060 0.0075 
1.5 0.0044 0.0068 
2.0 0.0034 0.0065 
2.36 0.0028 0.0064 
2.5 0.0027 0.0064 
3.0 0.0024 0.0065 
3.5 0.0022 0.0065 
4.0 0.0021 0.0066 
4.5 0.0020 0.0066 
5.0 0.0040 0.0074 

Table III shows the effect of scaling on the error. Here the number of expansion 
coefficients was fixed at 100, and (y. was varied. The broad minimum around the 
value (II = 2.36 suggests that the exact value of cy is not critical. If, however, 01 
deviated greatly from this minimal value, serious errors could result. 

Finally we note a parenthetical result of our work: the function G(w) contains 
four types [ 181 of critical points and the function F(w) contains four critical points. 
We see that the four critical point in g(w) are mapped precisely into the four of 
F(w), i.e., at exactly the same w, except that the types of critical points have inter- 
changes under Hilbert transform as M,, +-+ M, ; Mz f--f MS . We conclude from this 
simple example that critical point structure cannot shift in w under a proper 
Hilbert transform [ 191. 

B. Transition Metal 

For our second example we consider the more complicated case of electronic 
structure of the lowest 11 conduction electrons of a face-centered-cubic transition 
metal-here palladium as calculated by Mueller, Freeman, Dimmock and 
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Furdyna [20]. We recall that the noninteracting electronic Greens’ function in 
the momentum and frequency representation for II bands is given by [21] 

Go@, co) = c (w - E,(k) + irl SGN(-%(K) - p))-‘, (53) 
n 

where 77 is an infinitesimal and p is the Fermi energy EF . The imaginary part 
of (48) is given by 

ImGO(k w) = -7r c SGN(E,(B) - p) 6(&(k) - w) (54) 
rl 

and the density of states of the lowest 11 electrons is given by 

G(w) = G SGN(w - p) & .I’ ImGO(k, w) dk. (55) 

FIG. 2. The density of states (a) and Hilbert transform (b) of electrons in fee palladium. 
The dashed line has a zero-th moment of 11. Because of the small error, only the expansion 
functions have been plotted. 



204 AFSHAR, MUELLER AND SHAFFER 

and is plotted in Fig. 2(a). The dispersion relation for the 
given by 

Greens’ function is 

Re GO(& w) = 5 Ix ~JJ ImG’(k, w’> SGN(o’ - p) , 
I 

-32 w --w 
(56) 

where the presence of Signum function in (56) removes the signurn function in (54) 
so that the integral to be performed in (56) is just the principal part of a delta 
function of a function of &. Here we consider only the w dependence of (56) by 
integrating (56) over the first BZ to produce the Hilbert transform pair 
i: = CR + iG, where 

(57) 

so that 
G,(w) = 7~ SGN(w - p) G(w). (58) 

We have taken the Signum function weighted Hilbert transform of G,(w) using 
the method given in Section II by expanding g(w) in the first 250 Hermite functions. 
We have used a scale factor 01 = 31.34. We notice that the fact that G(o) has no 
parity symmetry does not harm our completely general transformation, Eq. (27). 
We give our results in Fig. 2(b). Note that we have used atomic units of states 
per atom-Rydberg for both the real and imaginary parts. The total time for our 
routines for the 250 term expansion was 4 min on the IBM 360/50/75 at the Applied 
Mathematics Division at Argonne National Laboratory. 

SUMMARY AND DISCUSSION 

In this paper we have considered an exact numerical procedure for finding the 
Kramers-Kronig or Hilbert transform of a given function by means of an expan- 
sion in terms of Hermite functions. The practical advantage of removing the low- 
order moments of the initial function by means of an analytic fitting procedure 
have been stressed. Because of the simplicity and speed of expansion of numerical 
results in terms of Hermite functions, we believe that our procedures should 
prove useful in a wide variety of problems. Finally although all of our discussion 
of this paper has been couched in terms of the Hilbert transform, we point out 
that our expansion procedure in terms of Hermite functions are equally valid for 
the Fourier transform kernel, Eq. (20). Thus in contrast to Russel [22] who 
concluded in 1933 that “this use of Hermite functions (i.e., Fourier transformation) 
is, in general, not practicable,” we believe that Hermite functions are eminently 
suitable for such numerical work. 



20.5 STATES USING HERMITE FUNCTIONS 

APPENDIX 

The Positive Zeros and Weight Function for Hermite Integration for order 300. 
Note that the parentheses at the end of each number enclose a multiplication 
power of 10. 

i 

1 0.06407 41472 40219(00) 
2 0.19222 41925 71379(00) 
3 0.32037 94910 76731(00) 
4 0.44854 35469 46482(00) 
5 0.57671 98674 84211(00) 
6 0.70491 19643 56741(00) 
7 0.83312 33548 48544(00) 
8 0.96135 75631 21985(00) 
9 0.10896 18121 48474(01) 

10 0.12179 08571 66569(01) 
11 0.13462 32466 10075(01) 
12 0.14745 93369 22983(01) 
13 0.16029 94858 80652(01) 
14 0.17314 40527 22181(01) 
15 0.18599 33982 84332(01) 
16 0.19884 78851 37154(01) 
17 0.21170 78777 21467(01) 
18 0.22457 37424 88346(01) 
19 0.23744 58480 40787(01) 
20 0.25032 45652 77703(01) 
21 0.26321 02675 40432(01) 
22 0.27610 33307 61931(01) 
23 0.28900 41336 18831(01) 
24 0.30191 30576 86559(01) 
25 0.31483 04875 97702(01) 
26 0.32775 68112 03834(01) 
27 0.34069 24197 41004(01) 
28 0.35363 77079 99120(01) 
29 0.36659 30744 95444(01) 
30 0.37955 89216 52440(01) 
31 0.39253 56559 80238(01) 
32 0.40552 36882 63951(01) 
33 0.41852 34337 56145(01) 
34 0.43153 53123 74723(01) 
35 0.44455 97489 06545(01) 

N = 300 

Wfk’(X*“) 

0.128 14 85862 78527(00) 
0.12815 20880 83630(00) 
0.12815 90929 38003(00) 
0.12816 96033 31269(00) 
0.12818 36230 01091(00) 
0.12820 11569 37050(00) 
0.12822 22113 85832(W) 
0.12824 67938 57734(00) 
0.12827 49131 34490(00) 
0.12830 65792 78457(00) 
0.12834 18036 43157(00) 
0.12838 05988 85211(00) 
0.12842 29789 77690(00) 
0.12846 89592 24895(00) 
0.12851 85562 78625(00) 
0.12857 17881 55945(00) 
0.12862 86742 58499(00) 
0.12868 92353 93416(00) 
0.12875 34937 95845(00) 
0.12882 14731 53176(00) 
0.12889 31986 30997(00) 
0.12896 86969 00846(00) 
0.12904 79961 69817(00) 
0.12913 11262 12093(00) 
0.12921 81184 02481(00) 
0.12930 90057 52003(00) 
0.12940 38229 45667(00) 
0.12950 26063 82463(00) 
0.12960 53942 17719(00) 
0.12971 22264 0788 l(O0) 
0.12982 31447 57859(00) 
0.12993 81929 71039(00) 
0.13005 74167 02080(00) 
0.13018 08636 12652(00) 
0.13030 85834 30233(00) 
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N=300 

i Xi” 

36 0.45759 71732 17077(01) 
37 0.47064 80204 66418(01) 
38 0.48371 27313 32@40(01) 
39 0.49679 17522 38613(01) 
40 0.50988 55355 95289(01) 
41 0.52299 45400 40867(01) 
42 0.53611 92306 97249(01) 
43 0.54926 00794 31646(01) 
44 0.56241 75651 28007(01) 
45 0.57559 21739 68179(01) 
46 0.58878 43997 23317(01) 
47 0.60199 47440 56127(01) 
48 0.61522 37168 34511(01) 
49 0.62847 18364 57277(01) 
50 0.64173 96301 92552(01) 
51 0.65502 76345 29639(01) 
52 0.66833 63955 45051(01) 
53 0.68166 64692 83536(01) 
54 0.69501 84221 54947(01) 
55 0.70839 283 13 47863(01) 
56 0.72179 02852 60936(01) 
57 0.73521 13839 52988(01) 
58 0.74865 67396 12971(01) 
59 0.76212 69770 50959(01) 
60 0.77562 27342 11436(01) 
61 0.78914 46627 10220(01) 
62 0.80269 34283 96470(01) 
63 0.81626 97119 41308(01) 
64 0.82987 42094 54720(01) 
65 0.84350 76331 32506(01) 
66 0.85717 07119 35176(01) 
67 0.87086 41923 00860(01) 
68 0.88458 88388 94404(01) 
69 0.89834 54353 95049(01) 
70 0.91213 47853 25241(01) 
71 0.92595 77129 23309(01) 
72 0.93981 50640 63013(01) 
73 0.95370 77072 23158(01) 
74 0.96763 65345 10753(01) 
75 0.98160 24627 41485(01) 
76 0.99560 64345 81581(01) 
77 0.10096 49419 75549(02) 
78 0.10237 32416 32419(02) 

Wnv,“) 

0.13044 06280 10123(00) 
0.13057 70514 00859(00) 
0.13071 79099 13169(00) 
0.13086 32621 92688(00) 
0.13101 31692 96599(00) 
0.13 116 76947 74446(00) 
0.13132 69047 53321(00) 
0.13149 08680 27683(00) 
0.13165 96561 54062(00) 
0.13183 33435 50938(00) 
0.13201 20076 04081(00) 
0.13219 57287 77684(00) 
0.13238 45907 31631(00) 
0.13257 86804 45272(00) 
0.13277 80883 48087(00) 
0.13298 29084 57699(00) 
0.13319 32385 25665(00) 
0.13340 91801 91540(00) 
0.13363 08391 45774(00) 
0.13385 93253 01981(OO) 
0.13409 17529 79220(00) 
0.13433 12410 94941(00) 
0.13457 69133 69326(00) 
0.13482 88985 41787(OO) 
0.13508 73306 00484(00) 
0.13535 23490 25737(00) 
0.13562 40990 48361(00) 
0.13590 27319 23935(00) 
0.13618 84052 24215(00) 
0.13648 12831 46922(00) 
0.13678 15368 45252(00) 
0.13709 93447 78620(00) 
0.13740 48930 86255(00) 
0.13772 83759 85364(00) 
0.13805 99961 95847(00) 
0.13839 99653 93597(00) 
0.13874 85046 94727(00) 
0.13910 58451 73204(00) 
0.13947 22284 14639(00) 
0.13984 79071 09224(00) 
0.14023 31456 87203(00) 
0.14062 82210 00407(00) 
0.14103 34230 53899(00) 
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i X” 

79 0.10378 56452 03934(02) 
80 0.10520 22585 77901(02) 
81 0.10662 31909 07108(02) 
82 0.10804 85547 71127(02) 
83 0.10947 84663 48299(02) 
84 O.ilO91 30455 98719(02) 
85 0.11235 24164 59115(02) 
86 0.11379 67070 50575(02) 
87 0.11524 60499 00201(02) 
88 0. I 1670 05821 77869(02) 
89 0.11816 04459 49367(02) 
90 0.11962 57884 47361(02) 
91 0.12109 67623 61745(02) 
92 0.12257 35261 51134(02) 
93 0.12405 62443 77416(02) 
94 0.12554 50880 65523(02) 
95 0.12704 02340 90794(02) 
96 0.12854 18705 96601(02) 
97 0.13005 01874 45190(02) 
98 0.13 156 53867 05064(02) 
99 0.13308 76781 78634(02) 

100 0.13461 72809 74304(02) 
101 0.13615 44241 27682(02) 
102 0.13769 93472 7725.5(02) 
103 0.13925 23014 00482(02) 
104 0.14081 35496 17129(02) 
105 0.14238 44680 67554(02) 
106 0.14396 20468 74742(02) 
107 0.14554 98912 00145(02) 
108 0.14714 72224 04828(02) 
109 0.14875 43793 29162(02) 
110 0.15037 17197 06303(02) 
111 0.15199 96217 27093(02) 
112 0.15363 84857 76849(02) 
113 0.15528 87363 67860(02) 
114 0.15695 08242 95442(02) 
115 0.15862 52290 50238(02) 
116 0.1603 1 24615 25285(02) 
117 0.16201 30670 63404(02) 
118 0.16372 76288 99143(02) 
119 0.16545 67720 60003(02) 
120 0.16720 11678 04732(02) 
121 0.16896 15386 92596(02) 

N = 300 

Wn’W,“) 

0.14144 90557 92188(00) 
0.14187 54379 44763(00) 
0.14231 29039 36427(00) 
0.14276 18048 68347(00) 
0.14322 25095 76357(00) 
0.14369 54057 73886(00) 
0.14418 09012 87641(00) 
0.14467 94253 9.5006(00) 
0.14519 14302 73312(00) 
0.14571 73925 72203(00) 
0.14625 78151 21696(00) 
0.14681 32287 89954&Q 
0.14738 41945 06735(00) 
0.14797 13054 70132(00) 
0.14857 51895 56805(00) 
0.14919 65119 58192(00) 
0.14983 59780 68364(00) 
0.15049 43366 52432(00) 
0.15117 23833 28534(00) 
0.15187 09644 00786(00) 
0.15259 09810 86028(00) 
0.15333 33941 83268(00) 
0.15409 92292 41913(00) 
0.15488 95822 93313(00) 
0.15570 56262 19885(00) 
0.15654 86178 47856(00) 
0.15741 99058 63159(00) 
0.15832 09396 66510(00) 
0.15925 32793 02607(00) 
0.16021 86066 21943(00) 
0.16121 87378 60854(00) 
0.16225 56378 59000(00) 
0.16333 14361 73422(00) 
0.16444 84453 97047(00) 
0.16560 91820 49064(00) 
0.16681 63904 76960(00) 
0.16807 30703 001 lO(O0) 
0.16938 25080 35034(00) 
0.17074 83 136 80970(00) 
0.17217 44632 16932(00) 
0.17366 53481 79044(00) 
0.17522 58337 63597(00) 
0.17686 13272 53247(00) 
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i 

122 0.17073 86643 97687(02) 
123 0.17253 33884 07672(02) 
124 0.17434 66257 78456(02) 
125 0.17617 93721 57181(02) 
126 0.17803 27143 38727(02) 
127 0.17990 78426 89313(02) 
128 0.18180 60658 60659(02) 
129 0.18372 88283 37200(02) 
130 0.18567 77315 18488(02) 
131 0.18765 45592 .55524(02) 
132 0.18966 13090 57773(02) 
133 0.19170 02306 03538(02) 
134 0.19377 38737 76303(02) 
135 0.19588 51493 01395(02) 
136 0.19803 74063 1 l253(02) 
137 0.20023 45330 54717(02) 
138 0.20248 10898 76033(02) 
139 0.20478 24882 04038(02) 
140 0.20714 52368 44350(02) 
141 0.20957 72896 96028(02) 
142 0.21208 85516 34067(02) 
143 0.21469 16418 42953(02) 
144 0.21740 30968 97619(02) 
14.5 0.22024 53745 02475(02) 
146 0.22325 04339 47069(02) 
147 0.22656 67666 71338(02) 
148 0.22997 51746 38731(02) 
149 0.23393 23523 10660(02) 
150 0.23874 80976 36942(02) 

N = 300 

Wn’(Xi”) 

0.17857 78590 18452(00) 
0.18038 21789 34597(00) 
0.18228 18718 25591(00) 
0.18428 54965 61106(00) 
0.18640 27547 89126(00) 
0.18864 46971 09744(00) 
0.19102 39769 78230(00) 
0.19355 51660 47093(00) 
0.19625 51494 30925(00) 
0.19914 36261 35969(m) 
0.20224 37496 08365(00) 
0.20558 29575 48059(00) 
0.20919 40612 59533(00) 
0.21311 66968 92843(00) 
0.21739 92907 56593(00) 
0.22210 17702 33716(00) 
0.22729 93817 84612(00) 
0.23308 81972 22952(00) 
0.23959 32745 71523(00) 
0.24698 11437 11762(00) 
0.25547 96378 30989(00) 
0.26541 08377 29415(00) 
0.27724 88800 06507(00) 
0.29172 85834 77932(00) 
0.31006 84153 02829(00) 
0.33448 59076 06618(00) 
0.36961 00629 21528(00) 
0.42754 81977 49874(00) 
0.55859 77929 72507(00) 
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