Hilbert Transformation of Densities of States Using Hermite Functions*

R. Afshar
Department of Physics, Northern Illinois University, DeKalb, Illinois 60115
F. M. Mueller
Argonne National Laboratory, Argonne, Illinois 60439 and
Department of Physics, Northern Illinois University, DeKalb, Illinois 60115

AND
J. C. Shaffer

Department of Physics, Northern Illinois University, DeKalb, Illinois 60115
Received December 17, 1971

Abstract

It is shown that Hermite functions form a convenient representation of the Hilbert transform kernel (Kramers-Kronig transform). Application is made to two densities of states. The zeros and weight functions for Hermite integration for order $n=300$ are given in an appendix.

I. Introduction

Analytic linear integral transforms are part of the working knowledge of almost all physicists. One learns of the usefulness and applicability of the Fourier integral transform, for example, at the earliest stages of one's training. However, rather less attention is given to other integral transform systems, and less still to specific techniques to use in formulating numerical procedures. The result is that often inappropriate numerical procedures have been used to carry out such integral transforms. The most problematic example, we believe, is the case of singular kernels such as numerical Kramers-Kronig [1, 2] or Hilbert transformation [3-5] which contain implicit principle value integrals.

[^0]We believe, however, that any ordinary integral transform may be handled in a completely straightforward manner. One has two systems of functions $\Delta(\omega)$ and $\psi\left(\omega^{\prime}\right)$ related through a linear kernel $K\left(\omega, \omega^{\prime}\right)$ as

$$
\begin{equation*}
\psi(\omega)=\int K\left(\omega, \omega^{\prime}\right) \Delta\left(\omega^{\prime}\right) d \omega^{\prime} \tag{1}
\end{equation*}
$$

The case of the symmetric kernel

$$
\begin{equation*}
K\left(\omega, \omega^{\prime}\right)=K\left(\omega^{\prime}, \omega\right) \tag{2}
\end{equation*}
$$

has been treated exhaustively by Courant and Hilbert [4]. Simple numerical procedures consist of expanding ψ and Δ in a complete, orthonormal set $\psi_{n}(\omega)$,

$$
\left\{\begin{array}{l}
\psi(\omega) \tag{3}\\
\Delta(\omega)
\end{array}\right\} \sum_{n}\left\{\begin{array}{l}
a_{n} \\
\beta_{n}
\end{array}\right\} \varphi_{n}(\omega),
$$

and the kernel as the Cauchy outer product

$$
\begin{equation*}
K\left(\omega, \omega^{\prime}\right)=\sum_{n m} S_{n m} \varphi_{n}(\omega) \varphi_{m}\left(\omega^{\prime}\right), \tag{4}
\end{equation*}
$$

so that the integral Eq. (1) is reduced to the linear matrix equation

$$
\begin{equation*}
\alpha_{n}=\sum_{m} S_{n m} \beta_{m} . \tag{5}
\end{equation*}
$$

The problem of carrying out the numerical transform is thus reduced to the two mechanical operations of forming the expansion coefficients β in Eq. (3) and carrying out the matrix multiplication in Eq. (5).

In this paper, we will consider functions and kernels defined over the whole real line $(-\infty \leqslant \omega \leqslant \infty)$ and will thus focus on expansions in the complete set of Hermite functions $\psi_{n}(\omega)$. We will limit our discussion of the kernel to the important case of the Hilbert or Kramers-Kronig transform

$$
\begin{equation*}
K_{H}\left(\omega, \omega^{\prime}\right)=(P / \pi)\left[1 /\left(\omega-\omega^{\prime}\right)\right], \tag{6}
\end{equation*}
$$

where the P indicates that the principle value of the integral (1) is to be taken. Finally we limit ourselves here to consideration of cases where the function $\Delta\left(\omega^{\prime}\right)$ is well defined everywhere. We will consider real experimental data and the special problems inherent in extrapolation elsewhere.

We consider a mathematically exact treatment of the problem of numerical Hilbert transformation which is simple to use, can be applied to a variety of cases, and automatically least-square-fits data. In Section II we discuss the formal deriva-
tion of our technique, and in Section III the application to Monte-Carlo derived densities of electron states for a simple cubic s band and face-centered-cubic palladium. Section IV summarizes our results and discusses application to other systems.

II. Formalism

A. The Hilbert Operator

As is well known, the Kramers-Kronig relation between the real and imaginary parts of a response function arise because of causality. If, in the long wave length limit, a time varying field $E(t)$ is impressed upon a media starting at $t=0$, then the linear response $D(t)$ must also be zero for $t<0$, and is given by

$$
\begin{equation*}
D(t)=\epsilon(t) E(t) \tag{7}
\end{equation*}
$$

where ϵ is the (complex) generalized susceptibility. Upon taking the complex Fourier transform of (7) we obtain the Kramers-Kronig relations [6]:

$$
\begin{align*}
\epsilon_{1}(\omega)-1 & -\frac{P}{\pi} \int_{-\infty}^{\infty} \frac{\epsilon_{2}\left(\omega^{\prime}\right) d \omega^{\prime}}{\omega^{\prime}-\omega}, \\
\epsilon_{2}(\omega) & =-\frac{P}{\pi} \int_{-\infty}^{\infty} \frac{\left(\epsilon_{1}\left(\omega^{\prime}\right)-1\right) d \omega^{\prime}}{\omega^{\prime}-\omega}, \tag{8}
\end{align*}
$$

where ϵ_{1} and ϵ_{2} denote the real and imaginary parts, respectively, and $\epsilon_{1}(\infty)=1$. If we regard the principle value integrals of (8) as an operator \mathbf{P} then we have the functional relations

$$
\begin{align*}
\left(\epsilon_{1}-1\right) & =\mathbf{P}\left(\epsilon_{2}\right) \\
\epsilon_{2} & =-\mathbf{P}\left(\epsilon_{1}-1\right), \tag{9}
\end{align*}
$$

or that

$$
\begin{equation*}
\left(\epsilon_{1}-1\right)=-\mathbf{P}^{2}\left(\epsilon_{1}-1\right) \tag{10}
\end{equation*}
$$

which makes manifest that \mathbf{P} is an antiunitary operator.
The relations (8) form a Hilbert transform pair. The close connection between Hilbert and Fourier integral transformations is seen in that the (Dirichlet) kernel for (double) Fourier transformation is given by

$$
\begin{equation*}
K_{F}\left(\omega, \omega^{\prime}\right)=\frac{1}{\pi} \int_{0}^{\infty} d t \cos \left(\omega-\omega^{\prime}\right) t \equiv \delta\left(\omega-\omega^{\prime}\right) \tag{11}
\end{equation*}
$$

(a Dirac delta function), whereas the analogous kernel for Hilbert transformation is

$$
\begin{equation*}
K_{H}\left(\omega, \omega^{\prime}\right)=\frac{1}{\pi} \int_{0}^{\infty} d t \sin \left(\omega-\omega^{\prime}\right) t=\frac{1}{\pi} \frac{P}{\omega-\omega^{\prime}}, \tag{12}
\end{equation*}
$$

which we define as the (odd) function

$$
\begin{equation*}
\rho\left(\omega-\omega^{\prime}\right) \equiv(1 / \pi)\left[P /\left(\omega-\omega^{\prime}\right)\right] . \tag{13}
\end{equation*}
$$

The relations (11) and (12) may be used to form representations of the operators K_{F} and K_{H}. Any denumerable, complete set of functions defined over the whole real line may be used to form a representation for (11) since in terms of any complete orthonormal set $\psi_{n}(\omega)$ we have

$$
\begin{equation*}
\sum_{n} \psi_{n}(\omega) \psi_{n}\left(\omega^{\prime}\right)=\delta\left(\omega-\omega^{\prime}\right) \tag{14}
\end{equation*}
$$

where the sum extends over all of the members of the set. An analogous representation for the function $\rho\left(\omega-\omega^{\prime}\right)$ may be constructed as follows:

From (12), or by direct integration, we have

$$
\begin{equation*}
\rho\left(\omega-\omega^{\prime}\right)=\frac{-i}{2 \pi} \int_{-\infty}^{\infty} d t \operatorname{SGN}(t) e^{i\left(\omega-\omega^{\prime}\right) t} \tag{15}
\end{equation*}
$$

where $\operatorname{SGN}(t)$ is the signature or signum function (-1 for $t<0$ and +1 for $t>0$ and 0 , say, if $t=0$). We recall that the signum function, like the delta function, is a gencralized function [3] and has the property

$$
\begin{equation*}
(d / d x) \operatorname{SGN}\left(x-x^{\prime}\right)=2 \delta\left(x-x^{\prime}\right) \tag{16}
\end{equation*}
$$

Equation (15) allows us to construct representations of the Hilbert operator from the representation for $\exp (i \omega t)$. In this paper, we will concentrate on a single representation, the Hermite functions $\psi_{n}(\omega)$. We recall [7] that the n th-order orthonormal Hermite function is found from the corresponding Hermite polynomial $H_{n}(\omega)$ by

$$
\begin{equation*}
\psi_{n}(\omega)=N_{n} e^{-\omega^{2} / 2} H_{n}(\omega) \tag{17}
\end{equation*}
$$

where N_{n} is a normalization factor given by

$$
\begin{equation*}
N_{n}^{2}=\left(2^{n} n!\sqrt{\pi}\right)^{-1} . \tag{18}
\end{equation*}
$$

For our purposes the most important property of the Hermite functions is that
up to a phase factor i^{n}, the Fourier transform of a Hermite function of order n is the same Hermite function

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i \omega^{\prime} t} d \omega^{\prime} \psi_{n}\left(\omega^{\prime}\right)=i^{n} \psi_{n}(t) \tag{19}
\end{equation*}
$$

Multiplying both sides of Eq. (19) by $\psi_{n}(\omega)$ and utilizing Eq. (14), we have a representation for the Fourier kernel $e^{i \omega t}$:

$$
\begin{equation*}
e^{i \omega t}=\sqrt{2 \pi} \sum_{n} i^{n} \psi_{n}(t) \psi_{n}(\omega) \tag{20}
\end{equation*}
$$

and the conjugate relation for $e^{-i \omega^{\prime} t}$. Placing (20) in (15), we have

$$
\begin{equation*}
\rho\left(\omega-\omega^{\prime}\right)=(-i) \sum_{n} \sum_{m}(i)^{n}(-i)^{m} \psi_{n}(\omega) \psi_{m}\left(\omega^{\prime}\right) S_{n m}^{\prime}, \tag{21}
\end{equation*}
$$

where $S_{n m}^{\prime}$ is given by

$$
\begin{equation*}
S_{n m}^{\prime}=\int_{-\infty}^{\infty} d t \operatorname{SGN}(t) \psi_{n}(t) \psi_{m}(t) \tag{22}
\end{equation*}
$$

Thus $S_{n m}^{\prime}$ forms a representation of the signum operator in terms of the Hermite functions. Since the Hermite functions are simply odd or even, $\psi_{n}(-t)=(-1)^{n} \psi_{n}(t)$, the integral may be reduced to

$$
\begin{equation*}
S_{n m}^{\prime}=\left[1+(-1)^{m+n+1}\right] \int_{0}^{\infty} d t \psi_{n}(t) \psi_{m}(t) \tag{23}
\end{equation*}
$$

$S_{n m}^{\prime}$ is zero unless $n+m$ is odd. Let us assume that this is true. We define a symmetric real matrix g related to \underline{S}^{\prime} by

$$
\begin{equation*}
\sigma_{n m}=\int_{0}^{\infty} d t H_{n}(t) H_{m}(t) e^{-t^{2}} \tag{24}
\end{equation*}
$$

We recall [8] that the derivative $d\left[e^{-x^{2}} H_{n-1}(x)\right]$ is given by $e^{-x^{2}} H_{n}(x) d x$. Applying an integration by parts, we find the double recursion formula on the matrix \underline{q} :

$$
\begin{equation*}
\sigma_{n m}=H_{m}(0) H_{n-1}(0)+2 m \sigma_{n-1, m-1}, \tag{25}
\end{equation*}
$$

with a similar relation on interchanging n, m. Eliminating $\sigma_{n-1, m-1}$ from the later two equations, and replacing the normalization factors, we find the symmetric matrix:

$$
\begin{equation*}
S_{n m}^{\prime}=\sqrt{\frac{2^{-(n+m-2)}}{n!m!\pi}} \frac{n H_{n-1}(0) H_{m}(0)-m H_{m-1}(0) H_{n}(0)}{n-m} . \tag{26}
\end{equation*}
$$

Let us define the antisymmetric matrix \underline{S} such that

$$
\begin{equation*}
\rho\left(\omega-\omega^{\prime}\right)=\sum_{n m} S_{n m} \psi_{n}(\omega) \psi_{m}\left(\omega^{\prime}\right) \tag{27}
\end{equation*}
$$

Then the relation between \mathbf{S} and \mathbf{S}^{\prime} with $m=n+2 h+1$ is given by

$$
\begin{equation*}
S_{n m}=(-1)^{n+1} S_{n m}^{\prime} ; \quad S_{n m}=-S_{n m} \tag{28}
\end{equation*}
$$

The compactness of the matrix S can be seen either from Eq. (4) or from the fact that for fixed n

$$
\begin{equation*}
\lim _{h \rightarrow \infty} S_{n, n+2 h+1} \rightarrow 0 \quad \text { as } h^{-1} \tag{29}
\end{equation*}
$$

The latter is easily proved [9] by direct expansion of Eq. (26).

B. Hermite Integration

A separate report [10] gives the zeros and weight function for Hermite integration of order $n=20,26,50,76,150$. Those for the 300 -th order are given in an appendix. Also available are those of the 500 -th and 1000 -th order, which are probably high enough for any problem of practical interest. The Hermite function Fortran programs are also published in the Argonne report, and are available on request. Because there are no special problems in generating these functions, simple, upward recursion was used:

$$
\begin{equation*}
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \tag{30}
\end{equation*}
$$

The only numerical problem is the implicit factor of n ! in the Hermite polynomials, which was treated by extending the exponential part of the double precision word of an IBM 360/50/75 to include arbitrarily high powers of 16. To avoid overflow/ underflow problems the functions are replaced by zero if they are smaller than $16^{* *}(-17)$.

A thorough discussion of Hermite integration has been given by Hochstrasser [11] and Davis and Polansky [12] based on the classic work of Russel [13] and Salzer et al. [14]. Our results differ from that of the previous authors only in that we have gone to higher order [15] and used a different weight function. Hermite integration of an arbitrary function $f(x)$ is approximated, to order n, by

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} f(x) d x \cong \sum_{i=1}^{n} W_{n}\left(x_{i}{ }^{n}\right) f\left(x_{i}{ }^{n}\right) \tag{31}
\end{equation*}
$$

where $x_{i}{ }^{n}$ is the i-th zero of the n-th order Hermite polynomial H_{n}, and the weight factors W_{n} are given by

$$
\begin{equation*}
W_{n}\left(x_{i}^{n}\right)=2^{n-1} n!\sqrt{\pi /} n^{2}\left[H_{n-1}\left(x_{i}{ }^{n}\right)\right]^{2} . \tag{32}
\end{equation*}
$$

A numerically more convenient representation for Hermite integration is achieved if we consider instead

$$
\begin{equation*}
\int_{-\infty}^{\infty} g(x) d x=\sum_{i=1}^{n} W_{n}^{\prime}\left(x_{i}^{n}\right) g\left(x_{i}{ }^{n}\right) \tag{33}
\end{equation*}
$$

where $W_{n}{ }^{\prime}$ is given by

$$
\begin{equation*}
W_{n}^{\prime}\left(x_{i}^{n}\right)=W_{n}\left(x_{i}^{n}\right) \exp \left(x_{i}^{n^{2}}\right)=1 /\left(n / /_{n-1}^{2}\left(x_{i}^{n}\right)\right), \tag{34}
\end{equation*}
$$

where ψ_{n} is the n-th order orthonormal Hermite function. In the appendix we list the positive zeros and weight functions $W_{n}{ }^{\prime}$ for the Hermite polynomials of order 300 . For the overlapping case of $n=20$, our results agree with those of Salzer et al. to at least 14 significant figures.

We have found the zeros of the Hermite polynomials (or Hermite functions) by noticing that the sequence of polynomials $H_{0}, H_{i}, \ldots, H_{n}$ form a Sturm sequence. Thus by counting the number of sign changes in the sequence, we know precisely, by Budan's Theorem, the number of zeros between a given point x and zero. (Infinitesimally above zero the sign of the Hermite polynomials is plus.) An estimate of the largest zero of the Hermite polynomial of order n is found by remembering that the Hermite functions are eigenfunctions (with eigenvalue $\left.E_{n}=(n+1 / 2) \hbar \omega_{c}\right)$ of the simple harmonic oscillator operator, $H=p^{2} / 2 m+\frac{1}{2} k x^{2}$, wherc $\omega_{c}=\sqrt{k / m}$. Wc recall that the last zero of the probability density of the n-th harmonic oscillator eigenfunction is bounded by the classical limit $\sqrt{2 E_{n} / k}$, or in the appropriate units ($m=k=1$), by $x_{\max }=\sqrt{2 n+1}$. Thus all of the zeros of the n-th order Hermite polynomial lie between $\pm \sqrt{2 n+1}$.

Our computational procedure for evaluating the zeros of the n-th polynomial used the interval given by the absolute bounds $\pm \sqrt{2 n+1}$ and continuously subdivided this interval by a factor of 2 . Each subinterval was selected for further operation depending on whether the Sturm sequence predicted an appropriate zero in the left or right-hand portions. Such a procedure quickly, and accurately converged to our results in the appendix. We have further tested our zeros through the sum rule:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}^{n}\right)^{2}=\frac{n(n-1)}{2} \tag{35}
\end{equation*}
$$

to an accuracy of at least 14 significant figures for all cases n.
In Table I we present the lowest $10(10 \times 10)$ elements of the antisymmetrical matrix \mathbf{S}. Note that for finite order the operator Eq. (4) reduces to a matrix equation and that the square of $\mathbf{S}(\equiv \mathbf{S} 2)$ is a matrix whose diagonal elements have an
TABLE I

	$m \quad 0$	1	2	3	4	5	6	7	8	9
0	0.0	-0.79788	0.0	-0.32574	0.0	-0.21851	0.0	-0.16858	0.0	-0.13907
1	0.79788	0.0	-0.56419	0.0	-0.16287	0.0	-0.08921	0.0	-0.05960	0.0
2	0.0	0.56419	0.0	-0.69099	0.0	-0.25752	0.0	-0.16689	0.0	-0.12644
3	0.32574	0.0	0.69099	0.0	-0.59841	0.0	-0.18209	0.0	-0.10220	0.0
4	0.0	0.16287	0.0	0.59841	0.0	-0.66905	0.0	-0.24088	0.0	-0.15330
5	0.21851	0.0	0.25752	0.0	0.66905	0.0	-0.61075	0.0	-0.19044	0.0
6	0.0	0.08921	0.0	0.18209	0.0	0.61075	0.0	-0.65969	0.0	-0.23324
7	0.16858	0.0	0.16689	0.0	0.24088	0.0	0.65969	0.0	-0.61708	0.0
8	0.0	0.05960	0.0	0.10220	0.0	0.19044	0.0	0.61708	0.0	-0.65451
9	0.13907	0.0	0.12644	0.0	0.15330	0.0	0.23324	0.0	0.65451	0.0

absolute value slightly less than 1 . If we define the normalized trace T of the squared matrix S2 as

$$
\begin{equation*}
T=\frac{1}{N} \sum_{n=1}^{N}\left|(S 2)_{n n}\right| \tag{36}
\end{equation*}
$$

T has the converging values of $0.885,0.944,0.970,0.984,0.992$ for N of 10,25 , 50,100 and 200, respectively, with the largest error in the last (biggest n) term.

C. Moments and Scaling

If we assume that the function we wish to transform $\left(\equiv g\left(\omega^{\prime}\right)\right)$ has a norm of 1 , then we may think of $g\left(\omega^{\prime}\right)$ as a distribution density and the transformed function $F(\omega)$ as

$$
\begin{equation*}
F(\omega)=-\frac{P}{\pi} \int \frac{g\left(\omega^{\prime}\right) d \omega^{\prime}}{\omega^{\prime}}-\frac{\omega}{\omega} \tag{37}
\end{equation*}
$$

where F and g are real and imaginary parts of a self-energy, for example. Let us formally expand the kernel as

$$
\begin{equation*}
-\frac{P}{\omega^{\prime}-\omega}=\frac{P}{\omega} \sum_{m=0}^{\infty}\left(\frac{\omega^{\prime}}{\omega}\right)^{m} \tag{38}
\end{equation*}
$$

Then upon (carefully) interchanging summation and integration, Eq. (37) becomes

$$
\begin{equation*}
F(\omega)=\frac{P}{\pi \omega} \sum_{m=0}^{\infty}(\omega)^{-m} \int d \omega^{\prime} \omega^{\prime} m g(\omega) \tag{39}
\end{equation*}
$$

which (formally) shows that Hilbert transformation may be thought of as merely interchanging the Taylor and Laurent expansions (assuming they exist) of the two functions about zero. In terms of the distribution density g, we can define the m-th moment

$$
\begin{equation*}
\mu_{m} \equiv \int d \omega^{\prime} \omega^{\prime} m g\left(\omega^{\prime}\right) \tag{40}
\end{equation*}
$$

so that

$$
\begin{equation*}
F(\omega)=\frac{P}{\pi \omega} \sum_{m=0}^{\infty} \mu_{m}(\omega)^{-m} \tag{41}
\end{equation*}
$$

It is clear from (40) and (41) that a further expansion of the Laurent representation of $F(\omega)$ in Hermite functions yields a worse result for the low order terms. Better converged results would be achieved if we remove (analytically) as much of the low-order moments as we can from $g(\omega)$. In practice we do this by finding a simply
transformed analytic function $g^{\prime}(\omega)$ which resembles $g(\omega)$ as closely as possible and expanding not the entire $g(\omega)$ in Hermite functions but the difference as

$$
\begin{align*}
\beta_{n}^{\prime} & =\int d \omega^{\prime}\left(g\left(\omega^{\prime}\right)-g^{\prime}\left(\omega^{\prime}\right)\right) \varphi_{n}\left(\omega^{\prime}\right), \tag{42}\\
F(\omega) & =\sum S_{n m} \beta_{m}{ }^{\prime} \varphi_{n}(\omega)+F^{\prime}(\omega), \tag{43}
\end{align*}
$$

where $F^{\prime}(\omega)$ is the analytic transform of $g^{\prime}(\omega)$ and the difference $g^{\prime}\left(\omega^{\prime}\right)-g\left(\omega^{\prime}\right)$ has no zero-th moment. Thus a Laurent expansion of $\left(F(\omega)-F^{\prime}(\omega)\right.$) begins with the second term $\left(\sim \omega^{-2}\right)$, in the general case, and with the third term $\left(\sim \omega^{-3}\right)$ when $F(\omega)$ is odd. Further details are given in the results below.

Finally we consider the effects of scaling the expansion as

$$
\begin{equation*}
g(\omega)=\sum C_{n}(\alpha) \varphi_{n}(\alpha \omega) \tag{44}
\end{equation*}
$$

where α is a scaling constant. (Note that the form of our kernel is independent of scaling, providing that the scale factor in ω and in ω^{\prime} has the same value. Therefore the same matrix $S_{n m}$ may be used for all scaled cases.) It is clear from the completeness of the Hermite functions that convergence may be eventually obtained, independent of any particular α, but practical considerations demand that the convergence of (42) be as rapid as possible. For functions defined only over a finite range, as in this paper, we find that a best scale factor is approximately achieved, if the highest zero of the highest expansion function is scaled to fall at about twice the range R as

$$
\begin{equation*}
\alpha=\sqrt{2 N+1} / 2 R \tag{45}
\end{equation*}
$$

where N is the order of the highest Hermite function.
Note that a best scale factor depends on the actual form of the function one wishes to transform. However, as discussed below, the exact value of α is not critical, and our choice (45) will work well for many cases. The only important consideration is to avoid a confluence of the end of the function range ($\sqrt{2 N+1}$) and the edge of the (finite) integration range.

Results and Applications

As a first example of our technique of Hilbert transformation, we consider two applications to densities of states: the model-system triple-cosine s band density of states, and that of a more realistic transition metal (palladium).
A. s-band Density of States

We apply our technique to the important problem of deriving the " F " function for the density of s states in the simple cubic lattice:

$$
\begin{equation*}
F(\omega)=\frac{-P}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{G\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
G\left(\omega^{\prime}\right) & =\frac{2}{(2 \pi)^{3}} \int d \underline{k} \delta\left(E(\underline{k})-\omega^{\prime}\right) \tag{47}\\
E(\underline{k}) & =0-\cos \left(k_{x} a\right)-\cos \left(k_{\mu} a\right)-\cos \left(k_{z} a\right), \tag{48}
\end{align*}
$$

Fig. 1. The density of states (a) and Hilbert transform (b) of a simple cubic s band. Note that the density has a zero-th moment of 2 . As explained in the text, removal of the analytic-zero-th moment function (dashed lines) greatly improves the convergence. Because of the small error, only the Hermite expansion function have been plotted. In the plot we have sharpened very small rounding errors at ± 1.0 and ± 3.0 due to the finite (250) order of the expansion.
and $-(\pi / a)<k_{x}, k_{y}, k_{z}<\pi / a$. In Fig. 1(a) we plot a three hundred histogram approximation to (47), where we have used one-million Monte Carlo points [16] to integrate (47). The functions $F(\omega)$ and $G(\omega)$ have the analytic [17] representation

$$
\left\{\begin{array}{c}
G(\omega) \tag{49}\\
F(\omega)
\end{array}\right\}=\frac{2}{\pi} \int_{0}^{\infty} d t J_{0}^{3}(t)\left\{\begin{array}{c}
\cos (\omega t) \\
\sin (\omega t)
\end{array}\right\} .
$$

In order to improve convergence of the function $F(\omega)$, we have subtracted out the zero-th moment as was discussed above. The function $G(\omega)$ has a zero-th moment of $2\left(\int G(\omega) d \omega=2\right)$. We have used the triangle-like function $G_{s}(\omega)$

$$
\begin{equation*}
G_{s}(\omega)=\frac{2}{3}[1-\mathrm{SGN}(\omega) \omega / 3] \tag{50}
\end{equation*}
$$

which has the analytic transform

$$
\begin{equation*}
F_{s}(\omega)=-\frac{2}{3 \pi}\left[\ln \left|\frac{\omega-3}{\omega+3}\right|-\frac{\omega}{3} \ln \left|\frac{(\omega-3)(\omega-13)}{\omega^{2}}\right|\right] \tag{51}
\end{equation*}
$$

Note that to first order, the \log poles in (51) at ± 3 cancel (F_{s} is log-singular in its derivatives) as is shown in Fig. 1(b). Should the presence of such poles prove detrimental, in given applications, a less singular function than (50) should be used. For the cases considered here (50) and (51) cause no problems.

TABLE II
Convergence error of the expansion of the density of cubic s states G and its Hilbert transform F in scaled Hermite functions of various order n

	$G(\omega)$		$F(\omega)$	
n	$\mu_{0} \neq 0$	$\mu_{0}=0$	$\mu_{0} \neq 0$	$\mu_{0}=0$
25	0.0324	0.0097	0.1647	0.0099
50	0.0221	0.0055	0.1653	0.0071
100	0.0158	0.0028	0.1660	0.0064
150	0.0126	0.0022	0.1659	0.0065
200	0.0105	0.0018	0.1658	0.0066
250	0.0086	0.0016	0.1656	0.0066

In Table II we test the convergence of the Hilbert transform by listing the rms error (of both G and F) as a function of total number of expansion terms. The error is defined as

$$
\begin{equation*}
\text { error }^{2}=\frac{1}{N_{i}} \sum_{i}\left(G_{A}\left(\omega_{i}\right)-G\left(\omega_{i}\right)\right)^{2} \tag{52}
\end{equation*}
$$

where G_{A} is the analytic function (49), and G is formed from the expansion procedure. The two separate cases cover the absence or presence of the zero-th moment function. Clearly the presence of the moment function is very helpful for the accurate evaluation of the F function, but makes little difference to the G.

TABLE III
The effect of scaling the expansion function on the residual fitting error

	$n=100$	$\left(\mu_{0}=0\right)$	
α	G	F	
0.25	0.0237	0.0211	
0.50	0.0096	0.0098	
1.0	0.0060	0.0075	
1.5	0.0044	0.0068	
2.0	0.0034	0.0065	
2.36	0.0028	0.0064	
2.5	0.0027	0.0064	
3.0	0.0024	0.0065	
3.5	0.0022	0.0065	
4.0	0.0021	0.0066	
4.5	0.0020	0.0066	
5.0	0.0040	0.0074	

Table III shows the effect of scaling on the error. Here the number of expansion coefficients was fixed at 100 , and α was varied. The broad minimum around the value $\alpha=2.36$ suggests that the exact value of α is not critical. If, however, α deviated greatly from this minimal value, serious errors could result.

Finally we note a parenthetical result of our work: the function $G(\omega)$ contains four types [18] of critical points and the function $F(\omega)$ contains four critical points. We see that the four critical point in $g(\omega)$ are mapped precisely into the four of $F(\omega)$, i.e., at exactly the same ω, except that the types of critical points have interchanges under Hilbert transform as $M_{0} \leftrightarrow M_{1} ; M_{2} \leftrightarrow M_{3}$. We conclude from this simple example that critical point structure cannot shift in ω under a proper Hilbert transform [19].

B. Transition Metal

For our second example we consider the more complicated case of electronic structure of the lowest 11 conduction electrons of a face-centered-cubic transition metal-here palladium as calculated by Mueller, Freeman, Dimmock and

Furdyna [20]. We recall that the noninteracting electronic Greens' function in the momentum and frequency representation for n bands is given by [21]

$$
\begin{equation*}
G^{0}(\underline{k}, \omega)=\sum_{n}\left(\omega-E_{n}(\underline{k})+i \eta \operatorname{SGN}\left(E_{n}(\underline{k})-\mu\right)\right)^{-1}, \tag{53}
\end{equation*}
$$

where η is an infinitesimal and μ is the Fermi energy E_{F}. The imaginary part of (48) is given by

$$
\begin{equation*}
\operatorname{Im} G^{0}(\underline{k}, \omega)=-\pi \sum_{n} \operatorname{SGN}\left(E_{n}(\underline{k})-\mu\right) \delta\left(E_{n}(\underline{k})-\omega\right) \tag{54}
\end{equation*}
$$

and the density of states of the lowest 11 electrons is given by

$$
\begin{equation*}
G(\omega)=\frac{-1}{\pi} \operatorname{SGN}(\omega-\mu) \frac{2}{(2 \pi)^{3}} \int \operatorname{Im} G^{0}(\underline{k}, \omega) d \underline{k} . \tag{55}
\end{equation*}
$$

Fig. 2. The density of states (a) and Hilbert transform (b) of electrons in fec palladium. The dashed line has a zero-th moment of 11 . Because of the small error, only the expansion functions have been plotted.
and is plotted in Fig. 2(a). The dispersion relation for the Greens' function is given by

$$
\begin{equation*}
\operatorname{Re} G^{0}(\underline{k}, \omega)=\frac{P}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\operatorname{Im} G^{0}\left(\underline{k}, \omega^{\prime}\right) \operatorname{SGN}\left(\omega^{\prime}-\mu\right)}{\omega^{\prime}-\omega} \tag{56}
\end{equation*}
$$

where the presence of signum function in (56) removes the signum function in (54), so that the integral to be performed in (56) is just the principal part of a delta function of a function of \underline{k}. Here we consider only the ω dependence of (56) by integrating (56) over the first $B Z$ to produce the IIilbert transform pair $G=G_{R}+i G_{I}$ where
so that

$$
\begin{equation*}
G_{I}(\omega)=\pi \operatorname{SGN}(\omega-\mu) G(\omega) \tag{58}
\end{equation*}
$$

We have taken the signum function weighted Hilbert transform of $G_{I}(\omega)$ using the method given in Section II by expanding $g(\omega)$ in the first 250 Hermite functions. We have used a scale factor $\alpha=31.34$. We notice that the fact that $G(\omega)$ has no parity symmetry does not harm our completely general transformation, Eq. (27). We give our results in Fig. 2(b). Note that we have used atomic units of states per atom-Rydberg for both the real and imaginary parts. The total time for our routines for the 250 term expansion was 4 min on the IBM $360 / 50 / 75$ at the Applied Mathematics Division at Argonne National Laboratory.

Summary and Discussion

In this paper we have considered an exact numerical procedure for finding the Kramers-Kronig or Hilbert transform of a given function by means of an expansion in terms of Hermite functions. The practical advantage of removing the loworder moments of the initial function by means of an analytic fitting procedure have been stressed. Because of the simplicity and speed of expansion of numerical results in terms of Hermite functions, we believe that our procedures should prove useful in a wide variety of problems. Finally although all of our discussion of this paper has been couched in terms of the Hilbert transform, we point out that our expansion procedure in terms of Hermite functions are equally valid for the Fourier transform kernel, Eq. (20). Thus in contrast to Russel [22] who concluded in 1933 that "this use of Hermite functions (i.e., Fourier transformation) is, in general, not practicable," we believe that Hermite functions are eminently suitable for such numerical work.

Appendix

The Positive Zeros and Weight Function for Hermite Integration for order 300. Note that the parentheses at the end of each number enclose a multiplication power of 10 .

$N=300$		
i	$X_{i}{ }^{n}$	$W_{n}{ }^{\prime}\left(X_{i}{ }^{n}\right)$
1	$0.064074147240219(00)$	$0.128148586278527(00)$
2	$0.192224192571379(00)$	$0.128152088083630(00)$
3	$0.320379491076731(00)$	$0.128159092938003(00)$
4	$0.448543546946482(00)$	$0.128169603331269(00)$
5	0.5767198674 84211(00)	$0.128183623001091(00)$
6	$0.704911964356741(00)$	$0.128201156937050(00)$
7	$0.833123354848544(00)$	$0.128222211385832(00)$
8	$0.961357563121985(00)$	$0.128246793857734(00)$
9	0.1089618121 48474(01)	0.128274913134490 (00)
10	$0.121790857166569(01)$	$0.128306579278457(00)$
11	$0.134623246610075(01)$	$0.128341803643157(00)$
12	0.1474593369 22983(01)	$0.128380598885211(00)$
13	0.1602994858 80652(01)	0.128422978977690 (00)
14	$0.173144052722181(01)$	$0.128468959224895(00)$
15	$0.185993398284332(01)$	$0.128518556278625(00)$
16	$0.198847885137154(01)$	$0.128571788155945(00)$
17	$0.211707877721467(01)$	$0.128628674258499(00)$
18	0.2245737424 88346(01)	0.1286892353 93416(00)
19	$0.237445848040787(01)$	$0.128753493795845(00)$
20	$0.250324565277703(01)$	$0.128821473153176(00)$
21	$0.263210267540432(01)$	$0.128893198630997(00)$
22	$0.276103330761931(01)$	$0.128968696900846(00)$
23	0.289004133618831 (01)	$0.129047996169817(00)$
24	$0.301913057686559(01)$	$0.129131126212093(00)$
25	$0.314830487597702(01)$	$0.129218118402481(00)$
26	$0.327756811203834(01)$	$0.129309005752003(00)$
27	$0.340692419741004(01)$	$0.129403822945667(00)$
28	$0.353637707999120(01)$	$0.129502606382463(00)$
29	0.3665930744 95444(01)	$0.129605394217719(00)$
30	0.379558921652440 (01)	$0.129712226407881(00)$
31	$0.392535655980238(01)$	$0.129823144757859(00)$
32	0.4055236882 63951(01)	$0.129938192971039(00)$
33	$0.418523433756145(01)$	$0.130057416702080(00)$
34	0.4315353123 74723(01)	$0.130180863612652(00)$
35	$0.444559748906545(01)$	$0.130308583430233(00)$

$N=300$		
i	$X_{i}{ }^{n}$	$W_{n}{ }^{\prime}\left(X_{i}{ }^{n}\right)$
36	$0.457597173217077(01)$	$0.130440628010123(00)$
37	$0.470648020466418(01)$	$0.130577051400859(00)$
38	$0.483712731332040(01)$	$0.130717909913169(00)$
39	$0.496791752238613(01)$	$0.130863262192688(00)$
40	$0.509885535595289(01)$	$0.131013169296599(00)$
41	$0.522994540040867(01)$	0.131167694774446 (00)
42	$0.536119230697249(01)$	$0.131326904753321(00)$
43	$0.549260079431646(01)$	$0.131490868027683(00)$
44	$0.562417565128007(01)$	$0.131659656154062(00)$
45	$0.575592173968179(01)$	$0.131833343550938(00)$
46	$0.588784399723317(01)$	$0.132012007604081(00)$
47	$0.601994744056127(01)$	$0.132195728777684(00)$
48	$0.615223716834511(01)$	$0.132384590731631(00)$
49	$0.628471836457277(01)$	$0.132578680445272(00)$
50	$0.641739630192552(01)$	$0.132778088348087(00)$
51	$0.655027634529639(01)$	$0.132982908457699(00)$
52	$0.668336395545051(01)$	$0.133193238525665(00)$
53	$0.681666469283536(01)$	$0.133409180191540(00)$
54	$0.695018422154947(01)$	$0.133630839145774(00)$
55	$0.708392831347863(01)$	$0.133859325301981(00)$
56	0.7217902852 60936(01)	$0.134091752979220(00)$
57	$0.735211383952988(01)$	$0.134331241094941(00)$
58	$0.748656739612971(01)$	$0.134576913369326(00)$
59	$0.762126977050959(01)$	$0.134828898541787(00)$
60	$0.775622734211436(01)$	$0.135087330600484(00)$
61	$0.789144662710220(01)$	$0.135352349025737(00)$
62	$0.802693428396470(01)$	$0.135624099048361(00)$
63	$0.816269711941308(01)$	$0.135902731923935(00)$
64	$0.829874209454720(01)$	$0.136188405224215(00)$
65	$0.843507633132506(01)$	$0.136481283146922(00)$
66	$0.857170711935176(01)$	$0.136781536845252(00)$
67	$0.870864192300860(01)$	$0.137099344778620(00)$
68	0.8845888388 94404(01)	$0.137404893086255(00)$
69	0.8983454353 95049(01)	$0.137728375985364(00)$
70	$0.912134785325241(01)$	$0.138059996195847(00)$
71	$0.925957712923309(01)$	$0.138399965393597(00)$
72	$0.939815064063013(01)$	$0.138748504694727(00)$
73	$0.953707707223158(01)$	$0.139105845173204(00)$
74	$0.967636534510753(01)$	$0.139472228414639(00)$
75	$0.981602462741485(01)$	$0.139847907109224(00)$
76	$0.995606434581581(01)$	$0.140233145687203(00)$
77	$0.100964941975549(02)$	$0.140628221000407(00)$
78	$0.102373241632419(02)$	$0.141033423053899(00)$

$N=300$		
i	$X_{i}{ }^{n}$	$W_{n}{ }^{\prime}\left(X_{i}{ }^{n}\right)$
79	0.1037856452 03934(02)	$0.141449055792188(00)$
80	$0.105202258577901(02)$	$0.141875437944763(00)$
81	$0.106623190907108(02)$	$0.142312903936427(00)$
82	$0.108048554771127(02)$	0.1427618048 68347(00)
83	0.1094784663 48299(02)	$0.143222509576357(00)$
84	$0.110913045598719(02)$	$0.143695405773886(00)$
85	$0.112352416459115(02)$	$0.144180901287641(00)$
86	$0.113796707050575(02)$	$0.144679425395006(00)$
87	$0.115246049900201(02)$	$0.145191430273312(00)$
88	$0.116700582177869(02)$	$0.145717392572203(00)$
89	$0.118160445949367(02)$	$0.146257815121696(00)$
90	$0.119625788447361(02)$	$0.146813228789954(00)$
91	$0.121096762361745(02)$	$0.147384194506735(00)$
92	$0.122573526151134(02)$	$0.147971305470132(00)$
93	$0.124056244377416(02)$	$0.148575189556805(00)$
94	$0.125545088065523(02)$	$0.149196511958192(00)$
95	0.1270402340 90794(02)	$0.149835978068364(00)$
96	$0.128541870596601(02)$	$0.150494336652432(00)$
97	$0.130050187445190(02)$	$0.151172383328534(00)$
98	$0.131565386705064(02)$	$0.151870964400786(00)$
99	$0.133087678178634(02)$	$0.152590981086028(00)$
100	$0.134617280974304(02)$	$0.153333394183268(00)$
101	$0.136154424127682(02)$	$0.154099229241913(00)$
102	$0.137699347277255(02)$	0.1548895822 93313(00)
103	$0.139252301400482(02)$	$0.155705626219885(00)$
104	$0.140813549617129(02)$	$0.156548617847856(00)$
105	$0.142384468067554(02)$	0.1574199058 63159(00)
106	$0.143962046874742(02)$	$0.158320939666510(00)$
107	$0.145549891200145(02)$	0.1592532793 02607(00)
108	$0.147147222404828(02)$	0.160218606621943 (00)
109	$0.148754379329162(02)$	0.1612187378 60854(00)
110	$0.150371719706303(02)$	$0.162255637859000(00)$
111	0.1519996217 27093(02)	$0.163331436173422(00)$
112	$0.153638485776849(02)$	0.1644484453 97047(00)
113	$0.155288736367860(02)$	0.1656091820 49064(00)
114	$0.156950824295442(02)$	0.166816390476960 (00)
115	$0.158625229050238(02)$	$0.168073070300110(00)$
116	0.1603124615 25285(02)	$0.169382508035034(00)$
117	0.1620130670 63404(02)	0.170748313680970 (00)
118	0.1637276288 99143(02)	$0.172174463216932(00)$
119	0.1654567720 60003(02)	$0.173665348179044(00)$
120	$0.167201167804732(02)$	$0.175225833763597(00)$
121	$0.168961538692596(02)$	$0.176861327253247(00)$

$N=300$		
i	$X_{i}{ }^{n}$	$W_{n}{ }^{\prime}\left(X_{i}{ }^{n}\right)$
122	0.1707386643 97687(02)	$0.178577859018452(00)$
123	$0.172533388407672(02)$	$0.180382178934597(00)$
124	0.1743466257 78456(02)	$0.182281871825591(00)$
125	$0.176179372157181(02)$	$0.184285496561106(00)$
126	$0.178032714338727(02)$	$0.186402754789126(00)$
127	0.1799078426 89313(02)	$0.188644697109744(00)$
128	0.1818060658 60659(02)	$0.191023976978230(00)$
129	$0.183728828337200(02)$	$0.193555166047093(00)$
130	0.1856777315 18488(02)	$0.196255149430925(00)$
131	$0.187654559255524(02)$	$0.199143626135969(00)$
132	0.1896613090 57773(02)	$0.202243749608365(00)$
133	$0.191700230603538(02)$	$0.205582957548059(00)$
134	0.1937738737 76303(02)	$0.209194061259533(00)$
135	$0.195885149301395(02)$	0.2131166968 92843(00)
136	$0.198037406311253(02)$	$0.217399290756593(00)$
137	$0.200234533054717(02)$	$0.222101770233716(00)$
138	0.2024810898 76033(02)	$0.227299381784612(00)$
139	$0.204782488204038(02)$	0.2330881972 22952(00)
140	$0.207145236844350(02)$	$0.239593274571523(00)$
141	$0.209577289696028(02)$	$0.246981143711762(00)$
142	$0.212088551634067(02)$	0.2554796378 30989(00)
143	$0.214691641842953(02)$	$0.265410837729415(00)$
144	0.2174030968 97619(02)	$0.277248880006507(00)$
145	$0.220245374502475(02)$	$0.291728583477932(00)$
146	$0.223250433947069(02)$	$0.310068415302829(00)$
147	$0.226566766671338(02)$	$0.334485907606618(00)$
148	$0.229975174638731(02)$	0.3696100629 21528(00)
149	0.2339323523 10660(02)	0.4275481977 49874(00)
150	$0.238748097636942(02)$	$0.558597792972507(00)$

Acknowledgments

We wish to thank Professor C. Wood and Dr. G. Rubloff for stimulating our interest in this problem, and for helpful discussions. We would also like to thank Drs. B. Veal, J. E. Robinson, J. W. Garland, S. Kirkpatrick, W. E. Rudge and N. Dalton for useful conversations. Finally we wish to acknowledge W. J. Cody of the Applied Mathematics Division of Argonne National Laboratory for hclpful consultations on the Hermite function generator programs, and the computation centers of Argonne National Laboratory and Northern Illinois University for excellent service.

References

1. R. Kronig, J. Opt. Soc. Amer 12 (1926), 547.
2. H. A. Kramers, Atti. Congr. Intern. Fisici. Como. 2 (1927), 545.
3. E. C. Tirchmarsh, "Introduction to the Theory of Fourier Integrals," Clarendon Press, Oxford, 1948; M. J. Lighthll, "Introduction to Fourier Analysis and Generalized Functions," University Press, Cambridge, 1959.
4. R. Courant and D. Hilbert, "Methods of Mathematical Physics," Volume 1, Interscience, New York, 1953.
5. N. Dunford and J. T. Schwartz, "Linear Operators Part II: Spectral Theory," Section XI.7, Interscience, New York, 1963.
6. See, for example, D. Pines, "Elementary Excitations in Solids" p. 288, W. A. Benjamin, New York, 1963.
7. E. C. Titcumarsin, ibid., p. 76.
8. W. Magnus, F. Oberhettinger, and R. Pal Soni, "Die Grundlehren der Mathematischen Wissenshaften," Band 52, p. 249, Springer-Verlag, New. York, 1966. Note that the definition of the third Hermite polynomial $H_{3}(x)$ on p. 250 is incorrect. The correct result is $H_{3}(x)=$ $8 x^{3}-12 x$.
9. N. Dalton and W. E. Rudge, private communications.
10. R. Afshar, F. M. Mueller and J. C. Shaffer, ANL (unpublished).
11. V. W. Hochstrasser, "Handbook of Mathematical Functions" (M. Abramowitz and I. A. Stegun, Eds.), Chapter 22, Dover, New York, 1965.
12. P. J. Davis and I. Polansky, op. cit., Chapter 25.
13. J. B. Russel, J. Math. Phys. 12 (1933), 291.
14. H. E. Salzer, R. Zuker and R. Capuano, J. Res. Nat. Bur. Sci 48 (1952), 111.
15. See also A. H. Stroud and D. Secrest, "Gaussian Quadrature Formulas," Prentice-Hall, Englewood Cliffs, New Jersey, 1966, for 0 to 136, even to 30 decimal places where the weight factor (34) is used.
16. This point is discussed thoroughly in F. M. Mueller, J. W. Garland, M. H. Cohen, and K. H. Bennemann, to be published.
17. J. Callaway and A. J. Hughes, Phys. Rev. 128 (1962), 134.
18. J. C. Phillps, Phys. Rev. 104 (1956), 1263.
19. J. C. Phillips, Solid State Phys. 18, 63.
20. F. M. Mueller, A. J. Freeman, J. O. Dimmock and A. M. Furdyna, Phys. Rev., in press.
21. A. A. Abrikosov, L. P. Gorkov, and I. Ye. Dzyaloshinshit, "Quantum Field Theoretical Methods in Statistical Physics," p. 51, 2nd ed., Pergamon Press, Oxford, 1965.
22. J. B. Russel, J. Math. Phys. 12 (1933), 274.

[^0]: * Based on work performed under the auspices of the U. S. Atomic Energy Commission and also supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Army Research Office, Durham.

